LDL transport cholesterol to the arteries and can be retained there by arterial proteoglycans, starting the formation of plaques that hinder blood flow. Thus, increased levels of LDLs are associated with atherosclerosis, and thus heart attack, stroke, and peripheral vascular disease. It is for such reasons that cholesterol inside LDL lipoproteins is often known as "bad" cholesterol.
Increasing evidence has revealed that the concentration and size of the LDL particles more powerfully relates to the degree of atherosclerosis progression than the concentration of cholesterol contained within all the LDL particles (Taubes and Krauss 2007). The healthiest pattern, though relatively rare, is to have small numbers of large LDL particles and no small particles. Having small LDL particles, though common, is an unhealthy pattern; high concentrations of small LDL particles (even though potentially carrying the same total cholesterol content as a low concentration of large particles) correlates with much faster growth of atheroma, progression of atherosclerosis, and earlier and more severe cardiovascular disease events and death.
A hereditary form of high LDL is familial hypercholesterolemia (FH). Increased LDL is termed hyperlipoproteinemia type II (after the dated Fredrickson classification).
LDL poses a risk for cardiovascular disease when it invades the endothelium and becomes oxidized, since the oxidized form is more easily retained by the proteoglycans. A complex set of biochemical reactions regulates the oxidation of LDL, chiefly stimulated by presence of free radicals in the endothelium. Nitric oxide down-regulates this oxidation process catalyzed by L-arginine. In a corresponding manner, when there are high levels of asymmetric dimethylarginine in the endothelium, production of nitric oxide is inhibited and more LDL oxidation occurs.
Thursday, September 8, 2011
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment